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A Note on the Classical Buckling Load
of Circular Cylindrical Shells under
Axial Compression

R. C. TENNYSON*
Institute of Aerophysics, Unwversity of Toronto

XPERIMENTS made to verify the theoretical results
of the classical linear theory have shown that, in con-
trast to experience gained with other thin structural elements
—e.g., plates and bars—the buckling of thin cylinders under
axial compression shows large differences from the predicted
values. Buckling loads are on the average only 20 to 30
percent of the classical values and exhibit unusually large
scatter.! A comparison between experiments and the classical
theory is summarized in Ref. 2.

However, recent experiments by the author on a thin-
walled circular cylinder under axial compression with no
excess internal pressure have repeatedly yielded results
very close to the classical buckling load.

Test cylinders were made from a liquid photoelastic plastic
spun-cast in an acrylic tube. The tube was attached to a
lathe which produces sufficient rotational energy to spin-cast
the polymer inside the shell form. To insure an absolutely
circular cross section, a Hysol plastic shell was first cast in
the acrylic tube. High rotational velocities of the order of
800 rpm were necessary in order to distribute the liquid evenly
in the form and to yield a circular shape. Centrifugal force
drives out the air bubbles which are trapped in the liquid
and produces a smooth imperfection-free shell wall. Careful
alignment of the form can result in a thickness variation as
low as ==6 percent.

At present, only one photoelastic model has been tested.
However, the buckling load of the model was repeatable as
many 2s 19 times, and each value was within 10 percent of
the calculated classical load. Buckling of the shell was com-
pletely elastic and was taken as the maximum load sustained
in the testing machine. Fig. 1 illustrates a typical test run
on the model using a circular reflection polariscope to deter-
mine the linear strain distribution up to buckling. Standard
photoelastic techniques were employed. The striped pattern
visible on the cylinder in Fig. 1 occurs because of two reflective
surfaces cast at different thicknesses in the shell’s wall.

During a particular test run, a high-speed Fastax camera
was used to photograph the buckling mechanism at a rate of
1,000 pps. (Fig. 2).

From Fig. 2 it can be estimated that the buckling process
oceurs in approximately 0.006 sec. What is of more immedi-
ate interest is the fact that initially two smaller buckles formed
and rapidly converged into one larger “diamond” or ellip-
tically shaped buckle. For the particular cylinder geometry,
theory? indicates that initially 12 buckles should form which,
at the end of the buckling process, should emerge as six
larger buckles. Six buckles did form at the end of the
buckling process and were located circumferentially around
the cylinder. From Fig. 2 one may conclude that 12 buckles
did exist at the start of buckling. It is intended that a faster
framing rate be used in an attempt to catch a square-wave
pattern to compare with the classically predicted wave shape.

Equilibrium states of the shell have been discovered in close
agreement with the experimentally observed ones, both in
applied load and wave pattern, which involve a much lower
applied load than that predicted by the classical theory.
This has led some to conclude that the unbuckled shell will
suddenly jump to those equilibrium positions during the
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Fig. 1 Critical stress ratio vs critical strain ratio for a
circular cylindrical shell under end compression. (A =
axial compressive stress, oo = critical compressive stress,
¢ = axial compressive strain, ¢, = critical compressive
strain, ¢ = shell-wall thickness, pps = pictures per seec).
Critiecal buckling loads (4 = external radial load, B = no
external disturbance, C = classical buckling load). Post-
buckling loads (D = with external load, E = no external

disturbance, F = theoretical value)

loading process without ever reaching the classical value—
e.g., the imperfection theory? and Tsien’s energy criterion.!
Since the cylinder tested was relatively imperfection-free,
then according to Tsien’s eriterion, under average laboratory
conditions, disturbances of sufficient magnitude will always
exist so that buckling of a cylinder must oceur at a load 40-60
percent of the classical value. However, with the test speci-
men used, Tsien’s lower buckling load was achieved only
when an external lateral load was deliberately superimposed
on the shell walls (Fig. 1). The shell, when left to buckle on
its own accord, reached within 10 percent of the predicted

FRAME NO.

Fig. 2 The buckling process as viewed through a
circular reflection polariscope. Frame 3, start of the
buckling process, frame 6, emergence of two distinct
small buckles, frame 8, final buckle form as visible on

cylinder (Fig. 1)
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classical value. Therefore, it is tentatively concluded that
when tests are performed on isotropic elastic cylinders
sufficiently free of imperfections, axially loaded in a rigid
test machine, the classical value can be attained and a lower
buckling load is not always inevitable.
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The Effect of a Cavity on Panel
Vibration

E. H. Dowewr* anp H. M. Vossg*
The Boetng Company, Seatile, Wash.

HE dynamic behavior of plates has recently acquired

new interest in relation to their aeroelastic stability
and excitation by noise. A prerequisite for studying such
phenomena, is the ability to predict the so-called natural
modes and frequencies of the plate. One of the factors which
may significantly alter the idealized model of a plate vibrat-
ing “in vacuo” is an underlying cavity. Here we present
the results of an analysis of the system shown in Fig. 1. The
model consists of a rectangular box of which one side is a
vibrating plate.

We will assume the amplitude of motion is sufficiently small
so that the linearized form of the governing flow equations
and equations of elasticity may be employed. As is shown
in numerous references, the flow field of compressible, in-
viscid fluid may be described by a velocity potential which
satisfies the acoustic equation,

2 dg Ve 10 "
ox? oy? dz¢ a2 Of?

where ¢ is the velocity potential. The appropriate boundary
conditions for our problem are
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Fig. 2 Panel frequency vs cavity depth

where W is the plate deflection. We further assume a cosine-
series expansion of the deflection,

W = ZZ[wm cos mllx cos @Z—y e""":| (4)

Solving the system of Egs. (1), (2), (3), using Eq. (4) gives
¢ = iweiet DY, [wm" (sinh vpz —
m n

vmn
coth v.,.d cosh vmﬂz)] cos # €08 n_z'y (5)
where
Vmn? = w2[(m/D)? + (n/b)?] — (w/a)? )

The pressure on the panel may be computed from the linear-
ized form of Bernoulli’s equation,

) th v,.d
P = pw% 2,0, W SRR s T os MY )
m n vmn l b

It may be noted that the nature of the pressure loading is
dependent on the magnitude and sign of v..? and hence on
the relative dimensions of panel and cavity. The quantity
0%mn? represents the difference in. the squares of the fre-
quencies of the natural cavity modes and the panel modcs,
and the pressure loading will be a maximum when this quan-
tity is a minimum. However, for most panels, the frequency
spectrum is such that all panel modes of interest lie between
the cavity normal mode (m = n = 0) and the transverse
mode (m, n = 1, 0). For practical panels and small cavity
depths, it may be concluded that the principal effect on the
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Fig. 3 Panel frequency vs cavity density



